Chapitre L: FRACTIONS (1)

I Différentes significations d'une fraction

- 1) $\frac{3}{5}$ c'est 3 fois $\frac{1}{5}$: $\frac{1}{5}$ $\frac{3}{5}$
- 2) $\frac{3}{5}$ c'est le nombre dont le produit par 5 est 3 : $\frac{3}{5}$ x 5 = 3
- 3) $\frac{3}{5}$ peut être considérée comme une proportion : il y a $\frac{3}{5}$ (ou 60 %) de filles dans le collège.

II La règle fondamentale

- 1) <u>Règle</u>: Si on multiplie le numérateur et le dénominateur d'une fraction par un même nombre non nul, on obtient une fraction égale.
- 2) Exemple: $\frac{3}{4,2} = \frac{30}{42} = \frac{15}{21} = \frac{5}{7}$. (On remarque que la règle ci-dessus est aussi valable pour les quotients, même si ce ne sont pas des fractions).

III Fractions de même dénominateur

- 1) <u>Méthode</u>: Pour comparer des fractions de même dénominateur, il suffit de comparer leur numérateur.
- 2) <u>Exemples</u>: Comparer $\frac{13}{9}$ et $\frac{4}{9}$. $\frac{13}{9} > \frac{4}{9}$ car 13 >4.

IV Fractions de dénominateurs multiples

- $1) \ \ \, \underline{\text{M\'ethode}}: Pour \ ranger \ des \ fractions, \ on \ peut \ commencer \ par \ les \ \'ecrire \ avec \ le \ m\'eme \ d\'enominateur.$
- 2) Exemples: Ranger $\frac{6}{24}$, $\frac{1}{6}$ et $\frac{3}{4}$ dans l'ordre croissant.

On remarque que 24 est le plus grand dénominateur et qu'il est dans la table de 6 et de 4. Donc, on peut écrire :

$$\frac{1}{6} = \frac{1 \times 4}{6 \times 4} = \frac{4}{24}$$
 et $\frac{3}{4} = \frac{3 \times 6}{4 \times 6} = \frac{18}{24}$.

On a ainsi :
$$\frac{4}{24} < \frac{6}{24} < \frac{18}{24}$$
 et donc $\frac{1}{6} < \frac{6}{24} < \frac{3}{4}$.

V Autres cas

- 1) Fractions de même numérateur : $\frac{9}{13} < \frac{9}{4}$ car 13 > 4.
- 2) <u>Comparaison avec 1</u>: $\frac{17}{8} > \frac{12}{13}$ car $\frac{17}{8} > 1$ et $\frac{12}{13} < 1$